
NASA/CR-2002-211659
ICASE Report No. 2002-19

Applications of the Lattice Boltzmann Method to
Complex and Turbulent Flows

Li-Shi Luo
ICASE, Hampton, Virginia

Dewei Qi
Western Michigan University, Kalamazoo, Michigan

Lian-Ping Wang
University of Delaware, Newark, Delaware

July 2002



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA’s
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page athttp://www.sti.nasa.gov

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320



NASA/CR-2000-
ICASE Report No.
NASA/CR-2002-211659
ICASE Report No. 2002-19

July 2002

Applications of the Lattice Boltzmann Method to
Complex and Turbulent Flows

Li-Shi Luo
ICASE, Hampton, Virginia

Dewei Qi
Western Michigan University, Kalamazoo, Michigan

Lian-Ping Wang
University of Delaware, Newark, Delaware

ICASE
NASA Langley Research Center
Hampton, Virginia

Operated by Universities Space Research Association

Prepared for Langley Research Center
under Contract NAS1-97046



Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650



APPLICATIONS OF THE LATTICE BOLTZMANN METHOD TO COMPLEX AND

TURBULENT FLOWS

LI-SHI LUO�, DEWEI QIy, AND LIAN-PING WANGz

Abstract. We brie
y review the method of the lattice Boltzmann equation (LBE). We show the three-

dimensional LBE simulation results for a non-spherical particle in Couette 
ow and 16 particles in sedimen-

tation in 
uid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence


ow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and �nd that the two

results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method

in small scales, as expected.

Key words. lattice Boltzmann method, turbulent 
ow, 3D homogeneous isotropic turbulence, spectral

method, non-spherical particulate suspensions

Subject classi�cation. Fluid Mechanics

1. Introduction. More than a decade ago, the lattice-gas automata (LGA) [5, 24, 6] and the lattice

Boltzmann equation (LBE) [17, 12, 2, 22] were proposed as alternatives for computational 
uid dynamics

(CFD). Since their inception, the lattice-gas and lattice Boltzmann methods have attracted much interest

in the physics community. However, it was only very recently that the LGA and LBE methods started

to gain the attention from CFD community. The lattice-gas and lattice Boltzmann methods have been

particularly successful in simulations of 
uid 
ow applications involving complicated boundaries or/and

complex 
uids, such as turbulent external 
ow over complicated structures, the Rayleigh-Taylor instability

between two 
uids, multi-component 
uids through porous media, viscoelastic 
uids, free boundaries in 
ow

systems, particulate suspensions in 
uid, chemical reactive 
ows and combustions, magnetohydrodynamics,

crystallization, and other complex systems (see recent reviews [3, 16] and references therein).

Historically, models of the lattice Boltzmann equation evolved from the lattice-gas automata [5, 24, 6].

Recently, it has been shown that the LBE is a special discretized form of the continuous Boltzmann equation

[8, 9]. For the sake of simplicity without loss of generality, we shall demonstrate an a priori derivation of

the lattice Boltzmann equation from the continuous Boltzmann equation with the single relaxation time

(Bhatnagar-Gross-Krook) approximation [1]. The Boltzmann BGK equation can be written in the form of

an ordinary di�erential equation:

Dtf +
1

�
f =

1

�
f (0) ; f (0) � �

(2��)D=2
exp

�
� (� � u)2

2�

�
; (1.1)

where Dt � @t + � �r, f � f(x; �; t) is the single particle distribution function, � is the relaxation time,

and f (0) is the Boltzmann distribution function in D-dimensions, in which �, u and � = kBT=m are the

macroscopic density of mass, the velocity, and the normalized temperature, respectively, T , kB and m are

temperature, the Boltzmann constant, and particle mass. The macroscopic variables are the moments of the
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distribution function f with respect to the molecular velocity �:

� =

Z
f d� =

Z
f (0) d� ; (1.2a)

�u =

Z
� f d� =

Z
� f (0) d� ; (1.2b)

�� =
1

2

Z
(� � u)2 f d� =

1

2

Z
(� � u)2 f (0) d� : (1.2c)

Equation (1.1) can be formally integrated over a time interval �t:

f(x+ ��t; �; t+ �t) = e��t=� f(x; �; t) +
1

�
e��t=�

Z �t

0

et
0=� f (0)(x+ �t0; �; t+ t0) dt0 : (1.3)

Assuming that �t is small enough and f (0) is smooth enough locally, and neglecting the terms of the order

O(�2t ) or smaller in the Taylor expansion of the right hand side of (1.3), we obtain

f(x+ ��t; �; t+ �t)� f(x; �; t) = �1

�
[f(x; �; t)� f (0)(x; �; t)] ; (1.4)

where � � �=�t is the dimensionless relaxation time. The equilibrium f (0) can be expanded as a Taylor

series in u up to u2

f (eq) =
�

(2��)D=2
exp

�
��2

2�

� �
1 +

(� � u)
�

+
(� � u)2
2�2

� u2

2�

�
: (1.5)

To obtain the Navier-Stokes equations, the hydrodynamic moments (�, �u, and ��) and their 
uxes

must be preserved in �nite discretized momentum space f��j� = 1; 2; : : : ; bg, i.e.,

� =
X
�

f� =
X
�

f (eq)� ; (1.6a)

�u =
X
�

�� f� =
X
�

�� f
(eq)
� ; (1.6b)

�� =
1

2

X
�

(�� � u)2 f� =
1

2

X
�

(�� � u)2 f (eq)� ; (1.6c)

where f� � f�(x; t) � W� f(x; ��; t) [8, 9]. It turns out that these moments can be evaluated exactly in

discretized momentum space by using Gaussian-type quadrature [8, 9, 23].

We can derive the nine-velocity athermal LBE model on a square lattice in two-dimensions

f�(xi + e��t; t+ �t)� f�(xi; t) = �1

�
[f�(xi; t)� f (eq)� (xi; t)] ; (1.7)

where the equilibrium f
(eq)
� , the discrete velocity set fe�g, and the weight coe�cients fw�g are given by

f (eq)� = w� �

�
1 +

3(e� � u)
c2

+
9(e� � u)2

2c4
� 3u2

2c2

�
; (1.8a)

e� =

8><
>:

(0; 0); � = 0 ;

(�1; 0)c; (0; �1)c ; � = 1; 2; 3; 4;

(�1; �1)p2c; � = 5; 6; 7; 8;

w� =

8><
>:

4=9; � = 0;

1=9; � = 1; 2; 3; 4;

1=36; � = 5; 6; 7; 8;

(1.8b)

and c � �x=�t. Equation (1.7) involves only local calculations and uniform communications to the nearest

neighbors. Therefore it is easy to implement and natural to massively parallel computers.
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The (incompressible) Navier-Stokes equation derived from the above LBE model is:

�@tu+ �u�ru = �rP + ��r2u ; (1.9)

with the isothermal ideal gas equation of state, the viscosity, and the sound speed given by

P = c2s� ; � =

�
� � 1

2

�
c2s�t ; cs =

1p
3
c : (1.10)

It should be noted that the factor �1=2 in the above formula for � accounts for the numerical viscosity due

to the second order derivatives of f�. This correction in � formally makes the LGA and LBE methods second

order accurate. Similarly, we can derive the six-velocity and seven-velocity models on a triangular lattice in

two-dimensions, and the twenty-seven-velocity models on a cubic lattice in three-dimensions [9].

There have been some signi�cant progress made recently to improve the lattice Boltzmann method: (i)

the generalized lattice Boltzmann equation with multiple relaxation times which overcomes some shortcom-

ings of the lattice BGK equation [14]; (ii) use of grid re�nement [4] and body-�tted mesh [10, 7] with inter-

polation/extrapolation techniques; (iii) adaptation of unstructured grid by using the �nite element method

or the characteristic Galerkin method; (iv) application of implicit scheme for steady state calculation and

multi-grid technique to accelerate convergence (see a recent review [16] for further references).

In what follows we shall demonstrate the applications of the LBE method to simulate the 
ow of non-

spherical particulate suspensions in 
uid and homogeneous isotropic turbulence in a periodic box.

2. LBE Simulation of Flows of Non-Spherical Particulate Suspensions. The 
ow of particulate

suspensions in 
uid is di�cult to quantify experimentally and to simulate numerically in some cases. Yet

the 
ow of particulate suspensions is important to industrial applications such as 
uidized beds. There have

been some successful simulations of the 
ow of spherical suspensions by using conventional CFD methods,

such as the �nite element method. However, the simulation of the 
ow of non-spherical suspensions still

remains as a challenge to the conventional CFD methods. Recently the LBE method has been successfully

applied to simulate the 
ow of non-spherical suspensions in three-dimensions [19, 20]. The success of the

LBE method to this problem relies on the fact that the LBE method can easily handle the particle-
uid

interfaces [15], and accurately evaluate the force on the particle due to the 
uid 
ow [18].

We �rst simulate a single non-spherical particle in the Couette 
ow. The equilibrium states in a non-

spherical particulate suspension in a 3D Couette 
ow are simulated for a particle Reynolds number up to

320. Particle geometries include prolate and oblate spheroids, cylinders and discs. We show that the inertial

e�ect at any �nite Reynolds number qualitatively changes the rotational motion of the suspension, contrary

to Je�ery's theory at zero Reynolds number [13]. At a non-zero Reynolds number, a non-spherical particle

reaches an equilibrium state in which its longest and shortest axes are aligned perpendicular and parallel

to the vorticity vector of the 
ow, respectively. This equilibrium state is unique, dynamically stable, fully

determined by the inertial e�ect, the maximum energy dissipation state. Systems of either �fty cylinders or

�fty discs in Couette 
ow are also simulated. Multi-particle interactions signi�cantly change the equilibrium

orientation of solid particle. The e�ect is stronger for cylinders than for discs. The details of this work will

be reported elsewhere [21].

Figure 1 shows a 3D LBE simulation of sixteen cylindrical particles falling under the in
uence of gravity.

The left �gure illustrates the time evolution of the entire system of sixteen particles, while the right �gure

demonstrates the formation of inverted T con�gurations in the sedimentation, which has been observed

experimentally. To the best of our knowledge, this phenomenon was �rst reproduced numerically by the

LBE direct numerical simulation [20].
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Fig. 1. 3D LBE simulation of particles sedimentation in 
uid. Particle size is D = 12 and L = 24. System size is

Nx�Ny �Nz = 140� 150� 35. The averaged single-particle Re � 16:9. (left) Evolution of 16 particles (from left to right and

top to bottom). (right) Formation of inverted T con�gurations which are also observed in experiment.

Table 3.1

Parameters in lattice Boltzmann and pseudo-spectral simulations: L is the length of box side; N3 is the system size; � is

the viscosity; u0 is the RMS 
uctuation of the initial velocity �eld; dt is the time step size; T is total integration time, Re� is

the Taylor microscale Reynolds number; and M is the Mach number.

Method L N3 � u0 dt T Re� M

Spectral 2� 1283 0.01189 0.993311 0.002 2 35.0 0

LBE 128 1283 0.009869 0.040471 1 1000 35.0 0.0687

3. LBE Simulation of 3D Homogeneous Isotropic Turbulence. Homogeneous isotropic turbu-

lence in a three-dimensional periodic cubic box remains as a stand problem in the �eld of direct numerical

simulation of turbulence. Due to the simplicity of the boundary conditions, the pseudo-spectral method can

be easily used to simulate the 
ow. Because of its accuracy, the pseudo-spectral result is often used as a

benchmark standard. Here the LBE simulation of the 
ow is compared with the pseudo-spectral simulation.

The parameters of the simulation are given in Table 3.1. The initial condition is a random velocity �eld
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Fig. 2. LBE vs. Pseudo-spectral DNS of 3D homogeneous isotropic turbulence. System size is 1283. Re� = 35. (a) The

energy spectrum E(k) as a function of time. (b) The decay of the mean kinetic energy K and dissipation rate �. The results

from the LBE simulation are scaled according to the dimensions used in the spectral simulation.

with a Gaussian distribution and a compact energy spectrum

E(k) / k

k0

2

exp

�
� k

k0

2�
:

The boundary conditions are periodic in three dimensions. The Taylor microscale Reynolds number is de�ned

as

Re� =

r
2K(t = 0)

3

�

�
=

uRMS�

�
;

where K(t = 0) = hu20=2iV = h3u2
RMS

=2iV is the volume averaged kinetic energy (of the initial zero-mean

Gaussian velocity �eld u0 with RMS component uRMS), and � is the transverse Taylor microscopic scale:

� =
p
15�u2

RMS
=�;

where � is the dissipation rate.

Figure 2 shows the energy spectrum E(k) as function of time, and the time evolution of the mean kinetic

energy K and dissipation rate �. The lattice Boltzmann results (symbols) are compared with the pseudo-

spectral results (lines). The LBE results agree well with the pseudo-spectral results. Obviously the LBE

method is more dissipative, especially at high wave numbers k > 1
3kmax, where kmax = 1

3N , and N is the

number of mesh nodes in each direction. This is because the LBE method is only second order accurate in

space and time and thus more dissipative than the pseudo-spectral method.

4. Conclusions and Discussion. The above simulations were performed on a Beowulf cluster of

Pentium CPUs. For the simulation of the particulate suspension, the code consists two part: the lattice

Boltzmann method for the 
uid and molecular dynamics (MD) for the solid particles [19]. Even though

the MD part of the code is not yet parallelized, the speed of the code still scales well with the number of

CPUs up to 32 CPUs when the system size is 643 and with �fty particles. Presently we can easily simulate

a system of a few hundred particles on our Beowulf system.
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As for the simulation of the 3D homogeneous isotropic turbulence, the LBE code without optimization

has the same speed as the spectral code with a Beowulf cluster of eight CPUs (about 1s per time step).

However, we do expect the LBE code will scale linearly with the number of CPUs, but not the spectral code.

Our current research includes particulate suspension in 
uid with high volume fraction of particles, vis-

coelastic and non-Newtonian 
uids, and forced or free-decay homogeneous isotropic turbulence in a periodic

cube by using the lattice Boltzmann method on massively parallel computers.
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